
3.1  Introduction 

The fault analysis of a power system is required to provide information for 
the selection of switchgear, setting of relays and stability of system operation. 
A power system is not static but changes during the operation (switching on or 
off of generators and transmission lines) and planning (addition of generators 
and transmission lines). Thus fault studies need to be routinely performed by 
the utility engineers. 

Faults usually occur in a power system due to
	 •	 insulation failure of equipment.
	 •	 flashover of lines initiated by a lighting stroke.
	 •	 permanent damage to conductors and towers or accidental faulty 

operations.
Faults may either be three-phases in nature involving all three-phases in a 

symmetrical manner, or may be asymmetrical where usually only one or two 
phases may be involved. Faults may also be caused either by short-circuits 
to earth, between live conductors, or by broken conductors in one or more 
phases. Sometimes simultaneous faults may occur involving both short-circuit 
and broken conductor faults (also known as open-circuit fault).

3.2  Types of Faults

	 (i)	 Series fault or open-circuit fault
		  •	 One open conductor fault 
		  •	 Two open conductor fault
	 (ii)	 Shunt fault or short-circuit fault
		  •	 Symmetrical fault or balanced fault
			   —  Three-phase fault
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		  •	 Unsymmetrical fault or unbalanced fault
			   —  Line-to-ground (L-G) fault
			   —  Line-to-line (L-L) fault
			   — 	 Double line-to-ground (L-L-G) fault

A three-phase fault is a condition where either (a) all the three-phases of 
the system are short-circuited to each other, or (b) all the three-phases of the 
system are earthed. This type of fault is defined as the simultaneous short- 
circuited fault which occurs at all the three-phases and gives rise to symmetrical 
current. It occurs infrequently, but it is the most severe type. This fault current 
is determined by the internal emf of the machine in the system, the internal 
impedances and the impedance in the network between machine and fault.

The balanced three-phase faults may be analysed using per phase basis 
analysis or equivalent single-phase circuit. With asymmetrical three-phase 
faults, the use of symmetrical components helps to reduce the complexity 
of the calculations as transmission lines and components are by and large 
symmetrical, although the fault may be asymmetrical.

Fault analysis is usually carried out in per-unit quantities as they give 
solutions which are somewhat consistent over different voltage and power 
ratings, and operate on values of the order of unity.

This, in general, is a balanced condition, and we just need to know the 
positive-sequence network to analyse faults. Further, the single line diagram 
can be used, as all the three-phases carry equal currents displaced by 120°.

Typically, only 5% of the initial faults in a power system are three-phase 
faults with or without earth. Of the unbalanced faults, 80% are line-earth and 
15% are double line faults with or without earth and which can often deteriorate 
to three-phase fault. Broken conductor faults account for the rest.

A fault represents a structural network change equivalent with that caused 
by the addition of impedance at the place of a fault. If the fault impedance is 
zero, the fault is referred to as bolted fault or solid fault.

3.3	 Transient (Short-circuit) on Power System 
Components

A modern large interconnected power system components have inductive 
property which gives rise to transients when there is a sudden change in current.

3.3.1  Transient (Short-circuit) on a Transmission Line 

Let us consider the short-circuit transient on a transmission line. Certain 
simplifying assumptions are made at this stage. The line is fed from the 
constant voltage source. Short-circuit takes place when the line is unloaded 
and the line capacitance is negligible.
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Consider the series R–L circuit as shown in Figure 3.1. The closing of 
switch (SW) at t = 0 represents a first approximation of a three-phase short-
circuit at the terminals of an unloaded transmission line. The current is assumed 
to be zero before switch closes, and the source angle a determines the source 
voltage at t = 0. Now the Kirchhoff’s voltage law equation for the circuit

		  Ri t L
di t

dt
V t t( )

( )
sin ( )+ = + ≥2 0w a 	 (3.1)

Figure 3.1  Simple series R–L circuit.

The solution to the above equation is as follows.
Total short-circuit current

	 i(t)	=	iac(t) + idc(t)
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where symmetrical short-circuit current,
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dc offset current,
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Impedance of the transmission line
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The total short-circuit current in Eq. (3.2) is plotted in Figure 3.2 
along with two components. The symmetrical short-circuit current given by  
Eq. (3.3) is a sinusoidal. The dc offset current, given by Eq. (3.4), decays 
exponentially with time constant.

The total short-circuit current i(t), the value corresponding to the first peak, 
is called maximum momentary short-circuit current imm. If the decay of the 
transient current in this short time is neglected, then
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Figure 3.2  Waveform of a short-circuit current on a transmission line.
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Since the transmission line resistance is small, q  90°.  
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From Eq. (3.8), imm has the maximum possible value when a = 0. This implies 
that the effect of short-circuit will be severe if the fault occurs when the voltage 
wave is going through zero. Thus

		  i
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For the selection of circuit breakers, the momentary short-circuit current 
is taken corresponding to its maximum possible value.

3.3.2	 Transient (Short-circuit) on a Synchronous 
Machine

As mentioned earlier, the current flowing in the power system network during 
a fault depends on the machines connected to the system. Due to the effect of  
the armature current on the flux that generates the voltage, the current flowing 
in a synchronous machine differs immediately after the occurrence of the fault, 
a few cycles later, and under sustained or steady state conditions. Further there 
is an exponentially decaying dc component caused by the instantaneous value 
at the instant of fault occurring. These are shown in Figure 3.3. Figures 3.3(a) 
and 3.3(b) depict the steady state current waveform and the transient waveform 
of a simple R–L circuit to show the decay in the dc component.
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Figure 3.3  Steady state and transient waveform of transmission line.

In addition to this, in the synchronous machine, the magnitude of the 
ac current peak also changes with time as shown in Figure 3.4, with the 
unidirectional component of the transient waveform removed. Due to the initial 
low back emf at the instant of fault resulting in high current, the effective 
impedance is very low. Even when the dc transient component is not present, 
the initial current can be several times the steady state value.

Figure 3.4  Symmetrical short-circuit armature current in synchronous machine.

Thus the three regions are identified for determining the reactance. 
These are the subtransient reactance ¢¢X d for the first 10 to 20 ms of fault, the 
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transient reactance ¢X d for up to about 500 ms, and the steady state reactance 
X d (synchronous reactance). 

Under the steady state three-phase short-circuit condition, the armature 
reaction of an alternator produces a demagnetizing flux. This effect is represented 
as a reactance called armature reaction reactance, Xa . The combined of armature 
reactance, Xa and leakage reactance, Xl is called synchronous reactance, Xs . 
In case of a salient pole alternator, the synchronous reactance is called direct 
axis reactance, Xd  . 

Direct axis subtransient reactance ( ¢¢Xd ):  At the instant of short-circuit, 
the dc offset current appears in all the three-phases of stator. This dc offset 
current can induce current in rotor field winding and damper winding by the 
transformer action. The increase in field current and damper winding current 
will set up flux in a direction to augment the main flux. This effect can be 
represented by two reactances in parallel with Xa as shown in Figure 3.5. 
Here Xf represents the flux created by induced current in the field winding 
and Xdw indicates the flux created by induced current in the damper winding. 
The combined effect of all the three reactances is to reduce the total reactance 
of the machine and so the short-circuit current is very high in this state which 
is called subtransient state. That is, the total reactance under this condition is 
subtransient reactance.

		  ¢¢ = +
+ +

Xd X

X X X

l

a f dw

1
1 1 1

	 (3.10)

Figure 3.5  Circuit model of subtransient reactance.

Direct axis transient reactance ( ¢Xd ):  The reactance is effective after the 
damper winding currents have died out, i.e. the transient reactance of the 
machine as shown in Figure 3.6 is given by
	 ¢Xd 	=	 X X Xl a f+ ( || )

or	 ¢X d 	=	 X

X X

l

a f

+
+

1
1 1 	 (3.11) 
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Figure 3.6  Circuit model of transient reactance.

Direct axis synchronous reactance or steady state condition reactance: The 
transient state will exist for a few cycles and then the steady state conditions 
are achieved as the effect of field winding current will also die out in short 
time depending on its time constant. Thus the steady state total reactance as 
shown in Figure 3.7 is given by the sum of Xa and Xl .

		  Xd = Xa + Xl	 (3.12)

Figure 3.7  Circuit model of steady state reactance. 

The fundamental frequency component of armature current following the 
sudden application of short-circuit to the armature of an initially unloaded 
machine can be expressed as 
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where Eg is the rms line to lone neutral pre-fault terminal voltage of the unloaded 
synchronous machine. The armature resistance is neglected in the above equation. 

Note that at time t = 0, when the fault occurs the rms value of current

		  i I
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Xac
g

d

( )0 = ¢¢ =
¢¢

	 (3.14)

which is called the rms subtransient fault current, I . The duration of I  is 
determined by the time constant ¢¢t d , which is called the direct axis short-circuit 
subtransient time constant.

At a later time, when t is large compared to ¢¢t d , but small compared to the 
direct axis short-circuit transient time constant ¢t d , the first exponential term 
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in Eq. (3.13) has decayed almost to zero, but the second exponential has not 
decayed significantly. The rms ac fault current then equals to the rms transient 
fault current and given by

		  ¢ =
¢

I
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X
g

d

 	 (3.15)

when t is much larger than ¢t d , the rms ac fault current approaches its steady 
state value, given by
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After a fault occurs, the subtransient, transient, and steady state periods are 
characterized by the subtransients reactance ¢¢X d , the transient reactance ¢X d  and 
steady state reactance Xd respectively. These reactances have increasing values 
( ¢¢Xd  < ¢Xd  < Xd) and the corresponding components of the short-circuit current 
have decreasing magnitudes (|I| > |I | > |I |). With dc component removed, 
the initial symmetrical rms current is the rms value of the ac component of 
the fault current immediately after the fault occurs. 

Internal voltages of loaded machines under fault conditions
Let us consider a generator that is loaded when a fault occurs. Figure 3.8 
shows the equivalent circuit of generator that has a balanced three-phase load.

Figure 3.8  Equivalent circuit of a loaded generator under steady state condition.

IL is the current delivered by the generator. The circuit model of a 
synchronous generator operating under steady state condition supplying a load 
current IL is shown in Figure 3.8.

		  Eg = Vt + jILXd	 (3.17)

where	 Eg is the induced emf under loaded condition 
		  Xd is the direct axis synchronous reactance of the machine.
		  Vt is the terminal voltage of the generator.

If a three-phase fault or short-circuit occurs at point F, we see that a short-
circuit from F to neutral in the equivalent circuit does not satisfy the conditions 
for calculating subtransient current, for the reactance of the generator. 
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Now to study the subtransient state, Eg and Xd of Figure 3.8 should be 
replaced by Eg and Xd as shown in Figure 3.9.

Figure 3.9  Equivalent circuit of a loaded generator under subtransient condition.

		  ¢¢ = + ¢¢ = + ¢¢E V jI X V jI Xg t L d f L d 	 (3.18)

where Eg is the subtransient internal voltage.
In order to study the transient state, Eg and Xd of Figure 3.8 should be 

replaced by Eg and Xd as shown in Figure 3.10.

Figure 3.10  Equivalent circuit of a loaded generator transient condition.

		  ¢ = + ¢ = + ¢E V jI X V jI Xg t L d f L d 	 (3.19)

where Eg is the transient internal voltage.
The synchronous motors have internal emfs and reactances similar to that 

of generator except that the current direction is reversed.
	 Eg	=	 Vt – jILXd	 (3.20)
	 Eg	=	 Vt – jILXd	 (3.21)

3.4	 Symmetrical Short-circuit Current 
Calculation Through Thevenin’s Theorem

An alternative method of computing short-circuit current is through the 
Thevenin’s theorem. This method is faster and easily adapted to systematic 
computation for large networks.
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Consider a synchronous generator feeding a synchronous motor over a 
transmission line and the fault occurs at motor terminals as shown in Figure 3.11. 
The fault current and the bus voltage and the line current during the fault can 
be determined and the fault voltage and current can be obtained by using the 
prefault voltage and current.

3.4.1	 Procedure for Symmetrical Short-circuit Current 
Calculation Through Thevenin’s Theorem

	 1.	 Assume all prefault voltage magnitudes are 1.0 per unit and all prefault 
currents are zero.

	 2.	 Draw the single line diagram (Figure 3.11).

 

  Figure 3.11  Single line diagram of representative power system.

	 3.	 Draw the reactance diagram. The per unit reactance values are determined 
from the per unit analysis (Figures 3.12 and 3.13).

Figure 3.12  Reactance diagram of power system.

	 4.	 Prefault bus voltage and current are obtained from the result of load 
flow analysis.

	 5.	 Replace the reactances of synchronous machines by their subtransient/
transient values.

	 6.	 Short-circuited all the emf sources. The result is the passive Thevenin’s 
network (Figure 3.13).

Figure 3.13  Reactance diagram of power system.
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	 7.	 Draw Thevenin’s equivalent circuit viewed from the faulted bus.
	 8.	 Find the fault current 

		  I
E

j X Xf
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th f
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	 (3.22)

		  where,	 Eth or V° is the prefault voltage
			   Thevenin reactance,	 Xth = (Xg + X) || Xm
			   Xf is the fault reactance.  

X = XT1 + XTL + XT2

	 9.	 Determine the current contributed by the generator and motor, etc.
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	 10.	 Determine the postfault voltage using 

 		  Vi( f ) = Vi(0) + V = Vi(0) + (–jXthIf)	 (3.24)

	 11.	 Determine the postfault line flows
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-
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3.4.2	 Short-circuit Capacity (SCC) or Short-circuit MVA 
or Fault Level Calculations

In a power system, the maximum fault current (or fault MVA) that can 
flow into a zero impedance fault is necessary to be known for switch gear 
solution. This can either be the balanced three-phase value or the value at an 
asymmetrical condition. The fault level defines the value for the symmetrical 
condition. The fault level is usually expressed in MVA (or the corresponding 
per unit value), with the maximum fault current value being converted using 
the nominal voltage rating.

The short-circuit capacity (SCC) is defined by the product of magnitude 
of prefault bus voltage and postfault current.

		  Short-circuit capacity = |Eth|  |If |	 (3.26)
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The per unit voltage for nominal value is unity, so that

		  Fault level (p.u.) = 1

Zth

	 (3.27)

	 Fault MVA	=	fault level (p.u.)  MVAbase = 
MVAbase

Zth
	 (3.28)
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		  Base current = 
MVA

kV
base

b3
103¥ 	 (3.29)

      Fault current in A = 	fault current in p.u. (If )  base current	 (3.30)
The SCC of a busbar is the fault level of the busbar. The strength of a 

busbar (or the ability to maintain its voltage) is directly proportional to its 
SCC. An infinitely strong bus (or infinite busbar) has an infinite SCC, with 
zero equivalent impedance and will maintain its voltage under all conditions. 

The magnitude of short-circuit current is time dependant due to synchronous 
generators. It is initially at its largest value and decreasing to steady value. 
These higher fault levels tax circuit breakers (CBs) adversely so that current 
limiting reactors can be used.

The short-circuit MVA is a better indicator of the stress on CBs than the 
short-circuit current as CB has to withstand recovery voltage across breaker 
following arc interruption. The current flowing during a fault is determined by 
the internal emfs of machines in the network, the impedances of the machines, 
and the impedances between the machines and the fault.

3.5	 Selection of Circuit Breaker

The circuit breakers are protective devices which are used in power system 
to automatically open the faulty part of the system in the event of a fault. 
In normal working condition they can be used as a switch. Hence the two 
functions of CBs are as follows:
	 •	 To act as switch for normal load conditions
	 •	 To automatically isolate the faulty part in the event of a fault
Two of the CB ratings which require the computation of SC current are:
	 1.	 Rated momentary current and 
	 2.	 Rated symmetrical interrupting current.

Symmetrical short-circuit current is obtained by using subtransient reactance 
for synchronous machines. Momentary current (rms) is then calculated by 
multiplying the symmetrical momentary current by a factor of 1.6 to account 
for the presence of dc offset current.

The CB for a particular application is selected on the basis of the following 
ratings.
	 1.	 Normal working power level specified as rated interrupting current or 

rated interrupting kVA.
	 2.	 The fault level specified as either the rated short-circuit interrupting 

current or rated short-circuit current interrupting MVA.
	 3.	 Momentary current rating
	 4.	 Normal working voltage 
	 5.	 Speed of CB
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The symmetrical current to be interrupted is computed by using subtransient 
reactances for synchronous generators and transient reactances for synchronous 
motors. The dc offset value to be added to obtain the current to be interrupted 
is accounted for by multiplying the symmetrical SC current by a factor as 
tabulated below.

Speed of CB Multiplying factor
8 cycles or more 1.0
5 cycles 1.1
3 cycles 1.2
2 cycles 1.4
1½ cycles 1.5

	 Short-circuit current interrupting MVA	=	 3 ¥ ¥| | | |V Ipf L f L 	 (3.31)

	 Short-circuit current interrupting in p.u	=	 3 ¥ ¥ ¥| | | | MVAp.u. p.u.V Ipf f b 	
(3.32)

EXAMPLE 3.1  Generators G1 and G2 are identical and rated 11 kV,  
20 MVA and have a transient reactance of 0.25 p.u. at own MVA base.  
The transformers T1 and T2 are also identical and are rated 11/66 kV, 5 MVA 
and have a reactance of 0.06 p.u. to their own MVA base. A 50 km long 
transmission line is connected between the two generators. Calculate the three-
phase fault current, when fault occurs at the middle of the line as shown in 
Figure 3.14.

Figure 3.14  Single line diagram.

Solution:
	 Base MVA, MVAnew	=	20 MVA
	 Base kV, kVnew	=	11 kV

Reactance of generator G1

Xp.u.(given) = 0.25 p.u., 	 MVAgiven = 20,  MVAnew = 20,  	kVgiven = 11,
kVnew = 11

Xp.u.(new) = 0 25
11

11

20

20
0 25

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.  
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Reactance of transformer T1 (Primary side)
Xp.u.(given) = 0.06 p.u., 	 MVAgiven = 5,  MVAnew = 20,  	kVgiven = 11,
kVnew = 11

		  Xp.u.(given) = j j0 06
11

11

20

5
0 24

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of transmission line
Middle of the line, (25 km long), actual reactance = 0.848  25 = 21.2 
	 Base kV on HT side of transformer T1 

= base kV on LT side
HT voltage rating

LT voltage rating
¥

	 Base kV on HT s ide of transformer T1 	=	11
66

11
66¥ = kV

	 kVnew	=	66 kV

	 Base impedance	=	
( )

.
kV

MVA
new

new

2 266

20
217 8= = W

	
	 Per unit reactance of the transmission line

		
= = =actual reactance,

base reactance,
p.u

W
W

21 2

217 8
0 0973

.

.
. .j

Reactance of transformer T2 (Primary side)
Xp.u.(given) = 0.06 p.u., 	 MVAgiven = 5,  MVAnew = 20,  	kVgiven = 11
kVnew = 11

		  Xp.u.(given) = j j0 06
11

11

20

5
0 24

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of generator G2

Xp.u.(given) = 0.25 p.u., 	 MVAgiven = 20,  MVAnew = 20,  	kVgiven = 11,
kVnew = ?

	 Base kV on LT side of transformer T2 

= base kV on HT side
LT voltage rating

HT voltage rating
¥

	 Base kV on LT side of transformer T2 	=	66
11

66
11¥ = kV

	 kVnew	=	11 kV

	 Xp.u.(new)	=	 0 25
11

11

20

20
0 25

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = j p.u.  
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Prefault reactance diagram of Example 3.1

The above diagram is reduced to j0.25 + j0.24 + j0.0973 = j0.5873.

Thevenin equivalent network of Example 3.1

Thevenin equivalent impedance, Xth is j0.5873 || j0.5873

		  Z X
j j

j j
jth thor p.u.= ¥

+
=0 5873 0 5873

0 5873 0 5873
0 29365

. .

. .
.

Prefault voltage or Thevenin voltage, Eth = 10°
Fault reactance or impedance, Xf = 0
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Fault current

		  If = 
E

j X X j
jth

th f( ) .
.

+
= – ∞ = -1 0

0 29365
3 405 p.u.  

	 Base current	=	
MVA

kV
ABase

b3
10

20

3 11
10 1049 733 3¥ =

¥
¥ = .

	 Fault current in A	=	fault current in p.u. (If )  base current

	 Fault current in A, |If |	=	3.405  1049.73 = 3574.32 A

EXAMPLE 3.2  A synchronous generator and synchronous motor each  
rated 30 MVA, 13.2 kV and both have subtransient reactance of 20% and the 
line reactance of 12% on a base of machine ratings. The motor is drawing  
25 MW at 0.85 p.f. leading. The terminal voltage is 12 kV when a three-phase 
short-circuit fault occurs at motor terminals. Determine the subtransient current 
in generator, motor and at the fault point.
Solution:  Single line diagram

Base MVA, MVAnew = 30 MVA
Base kV, kVnew = 13.2 kV

Reactance of generator G1

Xp.u.(given) = 0.2 p.u., 	 MVAgiven = 30,  MVAnew = 30,  	kVgiven = 13.2
kVnew = 13.2

		  Xp.u.(new) = 0 2
13 2

13 2

30

30
0 2

2

.
.

.
.¥ Ê

ËÁ
ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of transmission line
Actual reactance = 12% = 0.12  

Reactance of motor M
Xp.u.(given) = 0.2 p.u., 	 MVAgiven = 30,  MVAnew = 30,  kVgiven = 13.2
kVnew = 13.2

		  Xp.u.(new) = 0 2
13 2

13 2

30

30
0 2

2

.
.

.
.¥ Ê

ËÁ
ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.
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Prefault reactance diagram of Example 3.2

The above diagram is reduced to j0.2 + j0.12 = j0.32 

 

Thevenin equivalent network of Example 3.2

Thevenin equivalent impedance, Xth is j0.32 || j0.2

		  Z X
j j

j j
jth thor p.u.= ¥

+
=0 32 0 2

0 32 0 2
0 1231

. .

. .
.

Actual prefault voltage at fault point = 12 V
Base kV, kVnew = 13.2 kV

Per unit prefault voltage or Thevenin voltage, Eth = = – ∞12

13 2
0 9091 0

.
.  
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Fault reactance or impedance, Xf = 0
	 (i)	 Subtransient fault current 

			   If = 	
E

j X X j
th

th f( )

.

.

.

.+
= – ∞ = – ∞

– ∞
0 9091 0

0 1231

0 9091 0

0 1231 90
 = 7.385–90° p.u.

			   Base current = 	
MVA

kV
Abase

3
10

30

3 13 2
10 1312 163 3

b

¥ =
¥

¥ =
.

.

	 Fault current in kA	=	fault current in p.u.(If )  base current
	 Fault current in kA |If |	=	7.385–90°  1312.16 
		 =	9.690–90° kA
	 (ii)	 Subtransient fault current contributed by generator and motor

		  IG = 	
jX

j X X X
I

j

j
m

g m
f( )

.

.
.

+ +
= ¥0 2

0 52
7 385–90° = 2.840–90°

		  IM = 
j X X

j X X X
I

j

j
g

g m
f

( )

( )

.

.
.

+
+ +

= ¥0 32

0 52
7 385–90° = 4.545–90°

EXAMPLE 3.3  The two-bus system is shown in Figure 3.15. Determine the 
total three-phase fault current and the fault current supplied by each generator 
at the faulted point.

Figure 3.15  Single line diagram.
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Solution:
Base MVA, MVAnew = 75 MVA
Base kV, kVnew = 11 kV

Reactance of generator G1

Xp.u.(given) = 0.15 p.u., 	 MVAgiven = 75,  MVAnew = 75,  	kVgiven = 11,
kVnew = 11

		  Xp.u.(new) = 0 15
11

11

75

75
0 15

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = j p.u.

Reactance of generator G2

Xp.u.(given) = 0.1 p.u., 	 MVAgiven = 25,  MVAnew = 75,  	kVgiven = 11,  kVnew = 11

		  Xp.u.(new) = 0 1
11

11

75

25
0 3

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = j p.u.

Reactance of transformer T1: (primary side)

Xp.u.(given) = 0.1 p.u., 	 MVAgiven = 75,  MVAnew = 75,  	kVgiven = 11,  kVnew = 11

		  Xp.u.(new) = j j0 1
11

11

75

75
0 1

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of transformer T2: (primary side)

Xp.u.(given) = 0.08 p.u., 	MVAgiven = 25,  MVAnew = 75,  	kVgiven = 11,  kVnew = 11

		  Xp.u.(new) = j j0 08
11

11

75

25
0 24

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of the transmission line

150 km long, actual reactance = 0.2  150 = 30 

	 Base kV on HT side of transformer T1 

	 	   = base kV on LT side
HT voltage rating

LT voltage rating
¥

	 Base kV on HT side of transformer T1 	=	11
132

11
132¥ = kV

	 kVnew	=	132 kV

	 Base impedance	=	
(kV )

MVA
new

2

new

= =132

75
232 32

2

. W

	 Per unit reactance of transmission line

	 	   = 
actual reactance,

base reactance,
p.u.

W
W

= =30

232 32
0 1291

.
.j
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Prefault reactance diagram of Example 3.3

Thevenin reactance network of Example 3.3

                                                             

Thevenin equivalent network of Example 3.3

Thevenin equivalent impedance, Xth is ( j0.25 ||  j0.54) + ( j0.1291 || j0.1291)

	 Zth or Xth	=	
j j

j j

j j

j j

0 25 0 54

0 25 0 54

0 1291 0 1291

0 1291 0 1291

. .

. .

. .

. .

¥
+

+ ¥
+

		 =	j0.1708 + j0.065 = j0.2358 p.u.

Per unit prefault voltage or Thevenin voltage, Eth = 10°

Fault reactance or impedance, Xf = 0
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Fault current 

	 If	=	
E

j X X j
jth

th f( ) .
.

+
= – ∞ = -1 0

0 2358
4 241 p.u.

	 Base current	=	
MVA

kV
Abase

3
10

75

3 132
10 328 043 3

b

¥ =
¥

¥ = .

	Actual value of fault current in kA	=	fault current in p.u.(If )  base current
	Actual value of fault current in |If |	=	4.241  328.04 = 1391.22 A

Fault current supplied by each generator

	 Base current for primary side of transformer	=	
MVA

kV
base

3
103

b

¥  

		 =	 75

3 11
10 3936 53

¥
¥ = . A

	 Actual value of fault current	=	fault current in p.u.(If )  base current
	 Actual value of fault current	=	–j4.241  3936.5 = –j16,694.6 A

	 IG1	=	
jX

j X X
I

j

j
j j

g

g g
f

2

1 2

0 54

0 25 0 54
16 694 6 11 411 5

( )

.

( . . )
, . , .

+
=

+
¥ - = -

	 IG2	=	
jX

j X X
I

j

j
j j

g

g g
f

1

1 2

0 25

0 25 0 54
16 694 6 5283 10

( )

.

( . . )
, . .

+
=

+
¥ - = -

EXAMPLE 3.4  A 25 MVA, 11 kV generator with 20% subtransient reactance 
is connected through a transformer to a bus which supplies four identical motors, 
as shown in Figure 3.16. The subtransient reactance Xd of each motor is 20% 
on a base of 5 MVA, 6.6 kV. The three-phase rating of the transformer is  
25 MVA, 11/6.6 kV, with a leakage reactance of 10%. The bus voltage at the 
motors is 6.6 kV when a three-phase fault occurs at the point F. For the fault 
specified, calculate (i) the subtransient current in the fault, (ii) the subtransient 
current in breaker A and (iii) the momentary current in breaker A. 

Figure 3.16  Single line diagram.
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Solution:
Base MVA, MVAnew = 25 MVA
Base kV, kVnew = 11 kV

Reactance of generator G

Xp.u.(given) = 0.2 p.u., 	 MVAgiven = 25,  MVAnew = 25,  	kVgiven = 11,  kVnew = 11

		  Xp.u.(new) = 0 2
11

11

25

25
0 2

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Reactance of transformer T1 (Primary side)

Xp.u.(given) = 0.1 p.u., 	 MVAgiven = 25,  MVAnew = 25,  	kVgiven = 11,  kVnew = 11

		  Xp.u.(new) = j j0 1
11

11

25

25
0 1

2

. .¥ Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.  

Reactance of motor

Xp.u.(given) = 0.2 p.u., 	 MVAgiven = 5,  MVAnew = 25,  	kVgiven = 6.6,  kVnew = ?

	 Base kV on LT side of transformer T1 

	 	   = base kV on HT side
LT voltage rating

HT voltage rating
¥

	 Base kV on HT side of transformer T1 	=	11
6 6

11
6 6¥ =.
. kV

	 kVnew	=	6.6 kV

	 Xp.u.(new)	=	 j j0 2
6 6

6 6

25

5
1 0

2

.
.

.
.¥ Ê

ËÁ
ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃ = p.u.

Prefault reactance diagram of Example 3.4
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	 (i)	 Subtransient state:  The prefault reactance diagram is shown above.
The system being initially on no load, therefore, the generator and 
the motor induced emfs are each equal to 10° p.u. The prefault 
reactance diagram can be reduced to Thevenin equivalent network 
as shown below.

		  Thevenin equivalent impedance, Xth is 
( j0.3 || j1.0 || j1.0 || j1.0 || j1.0)

		  	
1 1

Z Xth th

or 	=	
1

0 3

1

1

1

1

1

1

1

1j j j j j.
+ + + +  

			 
1

Xth
	=	–j3.3 – j1 – j1 – j1 – j1 = – j7.33 p.u.

			   Xth	=	
1

7 33
0 1364

-
=

j
j

.
.

		  Per unit prefault voltage or Thevenin voltage, Eth = 10°  
		  Fault reactance or impedance, Xf = 0
		  Fault current 

			   If	=	
E

j X X j
jth

th f( ) .
.

+
= – ∞ = -1 0

0 1364
7 33 p.u.

			   Base current	=	
MVA

kV
Abase

3
10

25

3 6 6
10 2186 933 3

b

¥ =
¥

¥ =
.

.

		  Actual value of fault current = 	fault current in p.u.(If )  base current
		  Actual value of fault current |If |	 = 	7.33  2186.93 
				    = 16030.2 A
	 (ii)	 Subtransient current in breaker A is supplied by the generator and 

motors M1, M2 and M3. Therefore, the subtransient in breaker A may 
be written as.

		  Thevenin equivalent impedance, Xth is ( j0.3 || j1.0 || j1.0 || j1.0)
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		  	
1 1

Z Xth th

or 	=	
1

0 3

1

1

1

1

1

1j j j j.
+ + +

			 
1

Xth
	=	–j3.3 – j1 – j1 – j1 = – j6.33 p.u.

			   Xth	=	
1

6 33
0 15798

-
=

j
j

.
.

		  Per unit prefault voltage or Thevenin voltage, Eth = 10°  
		  Fault reactance or impedance, Xf = 0
		  Fault current 

			   If	=	
E

j X X j
jth

th f( ) .
.

+
= – ∞ = -1 0

0 15798
6 33 p.u.

			   Base current	=	
MVA

kV
Abase

3
10

25

3 6 6
10 2186 933 3

b

¥ =
¥

¥ =
.

.

		  Actual value of fault current = 	fault current in p.u.(If )  base current
		  Actual value of fault current |If |	 = 	6.33  2186.93 
				    = 13843.08 A
	 (iii)	 For finding momentary current through breaker A, we must add the 

dc offset current to the symmetrical subtransient obtained above in 
part (ii). A factor 1.6 is taken into account for dc component. 

	 	 Thus the momentary current through breaker A = 1.6  13843.08
				    = 22148.9 A 

3.6	 Fault Calculation Using Bus Impedance 
Matrix

The three-phase short-circuit fault current calculation used in the last chapter 
is not efficient and is not applicable to a large interconnected network. 

Consider a sample n bus system network as shown in Figure 3.17. It is 
assumed that the system is operating under balanced condition and a per phase 

Figure 3.17  Sample n-bus system.
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circuit model is used. A balanced three fault is to be applied at bus k through 
fault impedance.

The first step in the short-circuit study is to determine the prefault bus 
voltage and line current using the load flow study.

	 	 Prefault bus voltage can be defined as V

V

V

V

V

k

n

bus
0 =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

1
0

2
0

0

0





	 (3.33)

where, V V V Vk n1
0

2
0 0 0, , and are the prefault bus voltages.

Let bus k be the faulted bus and Zf be the fault impedance. The postfault 
bus voltage vector is given by 

		  V V Vf
bus bus= +0 D 	 (3.34)

where V is the change in bus voltage caused by the fault and is given by

		  D

D
D

D

V

V

V

Vn

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

2



	 (3.35)

Figure 3.18 shows the Thevenin’s network of the system with generator 
replaced by transient/subtransient reactance with their emfs shorted.

Figure 3.18  Changes in bus voltages caused by the fault.

 In Figure 3.18, we excite the passive Thevenin network with –Vk
0 is in 

series with Zf .
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Now
		  V = ZbusCf	 (3.36)

where [Zbus] is the bus impedance matrix of the passive thevenin network 
and is given by

		  Z

Z Z

Z Z

n

n nn

bus =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 1

1



  



	 (3.37)

and Cf is the bus current injection vector. The network is injected with current 
–If only at the kth bus, we have

		  C
I If

k f

=
= -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

0

0





	 (3.38)

From Eqs. (3.36) and (3.38)

		  Vk = –ZkkIf	 (3.39)

The voltage at the kth bus under fault is

	 Vk( f )	 =	V V V Z Ik k k kk f
0 0+ = -D 	 (3.40)

	 Vk( f )	 =	Zf I f	 (3.41)

	 Zf I f	 =	V Z Ik kk f
0 - 	 (3.42)

	 If	 =	
V

Z Z
k

kk f

0

+
	 (3.43)

Using Eq. (3.39), at the ith bus (k = i)

		  Vi = –ZiiIf	 (3.44)
Similarly from Eq. (3.40)

		  Vi( f ) = V V V Z Ii i i ik f
0 0+ = -D 	 (3.45)

Substituting for If , the bus voltage during the fault at bus i becomes

		  Vi( f ) = V
Z

Z Z
Vi

ik

kk f
k

0 0-
+( )

	 (3.46)

For i = k, Eq. (3.46) becomes

	 Vk( f )	=	 V
Z

Z Z
Vi

kk

kk f
k

0 0-
+( )
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	 Vk( f )	=	
Z

Z Z
Vkk

kk f
k( )+
0 	 (3.47)

Note that Vi
0 are the prefault bus voltage and can be obtained from the load 

flow study. Zbus matrix for the short-circuit study can be obtained by inversing 
Ybus matrix. Also note that synchronous motors must be included in Zbus 
formulation for the short-circuit study. However, in formulating short-circuit 
study network, load impedances are ignored, because these are very much 
larger than the impedances of generators and transmission lines.

Fault current flowing from bus i to bus j with impedance zij is given by

		  I
V V

z
Y V Vij f

i f j f

ij
ij i f j f( )

( ) ( )
( ) ( )

( )
( )=

-
= - 	 (3.48)

Prefault generator current can be obtained by referring Figure 3.19(a).
Prefault generator = PGi + jQGi

	 	 I
P jQ

VGi
Gi Gi

i
( )

( )
0

0

=
+

	 (3.49)

From Figure 3.19(a), we get

		  ¢ = + ¢E V jX IGi i Gi Gi( ) ( )0 0 	 (3.50)

From the short-circuit study, Vi( f ) is obtained, from Figure 3.19(b)

		  I
E V

jXGi f
Gi i f

Gi
( )

( )=
¢ -

¢
	 (3.51)

Figure 3.19

EXAMPLE 3.5  Consider the three bus system as shown in Figure 3.20.
Each generator is represented by an emf behind the transient reactance. 
All impedances are expressed in per unit on a common 100 MVA base. 
A three-phase fault with a fault impedance Zf = j0.15 p.u. occurs at bus 3 
using the bus impedance matrix method; calculate the fault current, the bus 
voltages, and the line current during the fault.
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Figure 3.20  Single line diagram.

Solution:
Step 1  Determine the bus admittance matrix using the direct inspection method.

	 Y11	=	 1

0 2

1

0 8

1

0 4
8 75

j j j
j

. . .
.+ + = -

	 Y12	=	 Y
j

j21
1

0 8
1 25= - =

.
.

	 Y13	=	 Y
j

j31
1

0 4
2 5= - =

.
.

	 Y22	=	 1

0 4

1

0 8

1

0 4
6 25

j j j
j

. . .
.+ + = -

	 Y23	=	 Y
j

j32
1

0 4
2 5= - =

.
.

	 Y33	=	 1

0 4

1

0 4
5 0

j j
j

. .
.+ = -

	 Ybus	=	
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j j

j j j

j j j

8 75 1 25 2 5

1 25 6 25 2 5

2 5 2 5 5 0

. . .

. . .

. . .

Step 2  Determine the bus impedance matrix Z
Ybus

bus

= 1
.

		

Z

j j j

j j j

j j j
bus =

È

Î

Í
Í
Í

˘

˚

˙
0 16 0 08 0 12

0 08 0 24 0 16

0 12 0 16 0 34

. . .

. . .

. . .
˙̇
˙
.

Step 3  Determine the fault current.
	 For a fault at bus 3 (k = 3) with fault impedance Zf = j0.15 p.u.
	 Prefault voltages of all buses, V1(0) = V2(0) = V3(0) = 1.0 p.u.
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	 The fault current is

		        
I

V

Z Z

V

Z Z j j
jf

k

kk f f

=
+

=
+

=
+

= -( ) ( ) .

. .
.0 3 0

33

1 0

0 34 0 15
2 041 p.u.

 
Step 4	 Determine the bus voltages.
	 The bus voltages during the fault are:

	 Vi( f )	=	Vi(0) – ZikIf

	 V1( f )	=	V1(0) – Z13If = 1.0 – ( j0.12)  (–j0.2041) = 0.7551 p.u.
	 V2( f )	=	V2(0) – Z23If = 1.0 – ( j0.16)  (–j0.2041) = 0.6734 p.u.
	 V3( f )	=	V3(0) – Z33If = 1.0 – ( j0.34)  (–j0.2041) = 0.3060 p.u.

Step 5	 Determine the line current during the fault.

	 Iij( f )	=	
V V

z
i f j f

ij

( ) ( )-

	 I12( f )	=	
V V

z j
jf f1 2

12

0 7551 0 6734

0 8
0 102( ) ( ) . .

.
.

-
= - = - p.u.

	 I13( f )	=	
V V

z j
jf f1 3

13

0 7551 0 3060

0 4
1 122( ) ( ) . .

.
.

-
= - = - p.u.

	 I23( f )	=	
V V

z j
jf f2 3

23

0 6734 0 3061

0 4
0 918( ) ( ) . .

.
.

-
= - = - p.u.

EXAMPLE 3.6  The bus impedance matrix of a four-bus network with values 
in per unit is 

		

Z jbus =

0 15 0 08 0 04 0 07

0 08 0 15 0 06 0 09

0 04 0 06 0 13 0 05

0 07

. . . .

. . . .

. . . .

. 00 09 0 05 0 12. . .

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

The generators connected to buses 1 and 2 have their subtransient reactances 
included in Zbus. If the prefault current is neglected, determine the subtransient 
current in per unit in the fault for a three-phase fault on bus 4. Assume the 
voltage at the fault is 1.00° p.u. before the fault occurs. Find also the per 
unit current from generator 2, whose subtransient reactance is 0.2 p.u.
Solution:  Fault at bus 4 (k = 4) with fault impedance, Zf = 0 p.u. 

Prefault voltages of all buses, V1(0) = V2(0) = V3(0) = V4(0) = 1.0 p.u.
The fault current is

	 If	=	
V

Z Z

V

Z Z j
jk

kk f f

( ) ( ) .

.
.0 4 0

44

1 0

0 12
8 33

+
=

+
= = - p.u.  
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	 V2( f )	=	V2(0) – Z24If = 1.0 – (j0.09)  (–j8.33) = 0.2503 p.u.

Per unit current from generator 2,

	 IGi( f )	=	
¢ -

¢
E V

jX
Gi i f

Gi

( )

	 I2	=	
1 0

0 2

1 0 0 2503

0 2
3 752.

.

. .

.
.( )-

= - = -
V

j j
jf p.u.

EXAMPLE 3.7  Consider the three bus network as shown in Figure 3.21. 
Determine the subtransient current in p.u. from generator 1 and in line 1–2 
and voltages at buses 1 and 3 for three-phase fault on bus 2. Use the bus 
impedance matrix.

Figure 3.21  Three bus network for Example 3.7.

Solution:
Step 1  Determine the bus admittance matrix using the direct inspection  

method.

	 Y11	=	 1

0 2

1

0 2

1

0 5
12

j j j
j

. . .
+ + = -

	 Y12	=	 Y
j

j21
1

0 2
5= - =

.

	 Y13	=	 Y
j

j31
1

0 5
2= - =

.

	 Y22	=	 1

0 2

1

0 4
7 5

j j
j

. .
.+ = -

	 Y23	=	 Y
j

j32
1

0 4
2 5= - =

.
.

	 Y33	=	 1

0 25

1

0 4

1

0 5
8 5

j j j
j

. . .
.+ + = -
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	 Ybus	=	
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j j

j j j

j j j

12 5 2

5 7 5 2 5

2 2 5 8 5

. .

. .

Step 2  Determine the bus impedance matrix Z
Ybus

bus

= 1
.

		

Z

j j j

j j j

j j
bus =

0 1447 0 1195 0 0692

0 1195 0 2465 0 1006

0 0692 0 1

. . .

. . .

. . 0006 0 1631j .

.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Step 3  Determine the fault current.
	 For a fault at bus 2 (k = 2) with fault impedance Zf = 0 p.u.
	 Prefault voltages of all buses, V1(0) = V2(0) = V3(0) = 1.0 p.u.
	 The fault current is

		
I

V

Z Z

V

Z Z j
jf

k

kk f f

=
+

=
+

= = -( ) ( ) .

.
.0 2 0

22

1 0

0 2465
4 057 p.u.

 
Step 4	 Determine the bus voltages.
	 Bus voltages during the fault are:
	 Vi( f )	=	Vi(0) – ZikIf

	 V1( f )	=	V1(0) – Z12If = 1.0 – (j0.1195)  (–j4.057) = 0.515 p.u.
	 V2( f )	=	V2(0) – Z22If = 1.0 – (j0.2465)  (–j4.057) = 5  10–5 p.u.
	 V3( f )	=	V3(0) – Z32If = 1.0 – (j0.1006)  (–j4.057) = 0.592 p.u.

Step 5	 Determine the line current during the fault.

	 Iij( f )	=	
V V

z
i f j f

ij

( ) ( )-

	 I12( f )	=	
( ) .

.
.( ) ( )V V

z j
jf f1 2

12

50 515 5 10

0 2
2 575

-
= - ¥ = -

-
p.u.

	 IGi( f )	=	
¢ -

¢
E V

jX
Gi i f

Gi

( )

	 I1	=	
1 0 0 515

0 2
2 43

. .

.
.

- = -
j

j p.u.

3.7	 Algorithm for Formation of the Bus 
Impedance Matrix

The bus impedance algorithm is a step by step procedure which proceeds 
branch by branch. The main advantage of this method is that any modification 
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of the network elements does not require complete rebuilding of [Zbus] 
matrix.

The bus impedance matrix can be build up starting with a single element 
and the process is continued until all the nodes and elements are included. 
Let us assume that the Zbus matrix exists for a partial network having n buses 
and a reference bus is as shown in the figure below. It is proposed to add a 
new element one at a time to this network and get modified [Zbus] matrix in 
the following four ways or four modifications.

Type 1 modification:	 Add an element with impedance Zb, connected between 
the reference node 0 and a new node p

Type 2 modification:	 Add an element with impedance Zb, connected between 
the existing node i and a new node p

Type 3 modification:	 Add an element with impedance Zb, connected between 
the existing node i and a reference node 0

Type 4 modification:	 Add an element with impedance Zb, connected between 
the existing nodes i and j

	 1.	 Add an element with impedance Zb, connected between the reference 
node 0 and a new node p.

			   In this case the addition of a new bus p to the reference node through 
impedance Zb without a connection to any of the buses of the original 
network cannot alter the original bus voltage when a current is injected 
at the new bus.

	 	 The modified [Zbus] matrix is given by

		  Z Z

Zb

bus
new

bus
old=

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

0

0

0

0 0 0





	 (3.52)

	 2.	 Add an element with impedance Zb, connected between the existing 
node i and a new node p.

			   Consider impedance Zb, connected between the existing node i and 
the new node p. The addition of bus will increase the order of the bus 
impedance matrix by one.
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	 	 The modified [Zbus] matrix is given by

		  Z

Z

Z

Z

Z

Z Z Z Z Z

i

i

ni

i i in ii b

bus
new

bus
old=

+

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

1 2



 ˙̇

	 (3.53)

	 3.	 Add an element with impedance Zb, connected between the existing 
node i and the reference node 0.

			   To find the new [Zbus], the first step is to add an element in 
between the existing node i and a fictitious node (n + 1) (instead of the 
reference node) and calculate the modified [Zbus] matrix of dimension 
(n + 1)  (n + 1) by using the matrix type 2 modification. The second 
step is to connect the fictitious node (n + 1) by zero impedance link 
to the reference node whose voltage is zero.

	 	 	 The new modified [Zbus] matrix of dimension n  n is obtained by 
applying Kron’s reduction formula to the last row and column using  
the following relation.

	

		  Z Z
Z Z

Z
j k njk jk

j n n k

n n

new old= -
¥

=+ +

+ +

( ) ( )

( ) ( )

, , , ...,
1 1

1 1

1 2 	 (3.54)

		  Here the size of the matrix will not change because no new node is added.
	 4.	 Add an element with impedance Z, connected between the existing 

nodes i and j.
			   Consider an element Zb, connected between two existing nodes i and 

j, the new modified Zbus matrix is given by
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Z

Z Z

Z Z

Z

Z Z

Z Z Z Z Z Z

j i

j i

nj ni

j i j i jn i

bus
new

bus
old=

-
-

-
- - -

1 1

2 2

1 1 2 2



 nn ii jj ij bZ Z Z Z+ - +

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙2 	

(3.55)
			   Now the size of the matrix becomes (n + 1)  (n + 1). The new modified 

[Zbus] matrix of dimension (n  n) is obtained by applying Kron’s reduction 
formula to the last row and column using the following relation.

		  Z Z
Z Z

Z
j k njk jk

j n n k

n n

new old= -
¥

=+ +

+ +

( ) ( )

( ) ( )

, , , ...,
1 1

1 1

1 2

EXAMPLE 3.8  The impedance matrix [Zbus] as shown in Figure 3.22.

Figure 3.22

Solution:
	 1.	 Add an element with impedance j1.0, connected between the reference 

node 0 and a new node 1. (Type 1 modification)

		  Zbus = [j1.0]
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	 2.	 Add an element with impedance j0.25, connected between the existing 
node 1 and a new node 2. (Type 2 modification)

		

		  Z
j j

j j j

j j

j jbus =
+

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

1 0 1 0

1 0 1 0 0 25

1 0 1 0

1 0 1 25

. .

. . .

. .

. .

	 3.	 Add an element with impedance j1.25, connected between the existing 
node 2 and the reference node 0. (Type 3 modification)

	 (a)	 To obtain [ bus] matrix use type 2 modification

		

Z

j j j

j j j

j j j j
bus =

+

È

Î

Í
Í
Í

˘

˚

1 0 1 0 1 0

1 0 1 25 1 25

1 0 1 25 1 25 1 25

. . .

. . .

. . . .

˙̇
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

j j j

j j j

j j j

1 0 1 0 1 0

1 0 1 25 1 25

1 0 1 25 2 50

. . .

. . .

. . .

	 (b)	 Now apply Kron’s reduction formula 

	 Z jk
new 	=	 Z

Z Z

Zjk
j n n k

n n

old -
¥+ +

+ +

( ) ( )

( ) ( )

1 1

1 1

		  j, k = 1, 2 and (n + 1) = 0 (reference node)
		  j = 1; k = 1 and (n + 1) = 0

			   Z11
new 	=	 Z

Z Z

Z
j

j j

j
j11

10 01

00

1 0
1 0 1 0

2 50
0 6old -

¥
= - ¥ =.

. .

.
.

		  j = 1; k = 2 and (n + 1) = 0

			   Z12
new 	=	 Z

Z Z

Z
j

j j

j
j12

10 02

00

1 0
1 0 1 25

2 50
0 5old -

¥
= - ¥ =.

. .

.
.
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		  j = 2; k = 1 and (n + 1) = 0

			   Z21
new 	=	 Z

Z Z

Z
j

j j

j
j21

20 01

00

1 0
1 25 1 0

2 50
0 5old -

¥
= - ¥ =.

. .

.
.

		  j = 2; k = 2 and (n + 1) = 0

			   Z22
new 	=	 Z

Z Z

Z
j

j j

j
j22

20 02

00

1 25
1 25 1 25

2 50
0 625old -

¥
= - ¥ =.

. .

.
.

		  Z
j j

j jbus =
È

Î
Í

˘

˚
˙

0 6 0 5

0 5 0 625

. .

. .

	 4.	 Add an element with impedance j0.05, connected between the existing 
node 2 and a new node 3. (Type 2 modification)

	 Zbus	=	
j j j

j j j

j j j j

0 6 0 5 0 5

0 5 0 625 0 625

0 5 0 625 0 625 0 05

. . .

. . .

. . . .+

È

Î

Í
Í
Í

˘

˚

˙
˙̇
˙

	 Zbus	=	
j j j

j j j

j j j

0 6 0 5 0 5

0 5 0 625 0 625

0 5 0 625 0 675

. . .

. . .

. . .

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

EXAMPLE 3.9  Obtain the bus impedance matrix [Zbus] as shown in  
Figure 3.23 using Zbus building algorithm. 

Figure 3.23
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Solution:
	 1.	 Add an element with impedance j0.5, connected between the reference 

node 0 and a new node 1. (Type 1 modification)

		  Zbus = [j0.5]

	 2.	 Add an element with impedance j0.2, connected between the existing 
node 1 and a new node 2. (Type 2 modification)

		  Z
j j

j j j

j j

j jbus =
+

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

0 5 0 5

0 5 0 5 0 2

0 5 0 5

0 5 0 7

. .

. . .

. .

. .
	

	 3.	 Add an element with impedance j0.2, connected between the existing 
node 1 and a new node 3. (Type 2 modification)

		  Z

j j j

j j j

j j j j

j

bus =
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
0 5 0 5 0 5

0 5 0 7 0 5

0 5 0 5 0 5 0 2

. . .

. . .

. . . .

00 5 0 5 0 5

0 5 0 7 0 5

0 5 0 5 0 7

. . .

. . .

. . .

j j

j j j

j j j

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

	 4.	 Add an element with impedance j0.2, connected between the existing 
nodes 2 and 3. (Type 4 modification)
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Z

Z Z

Z Z

Z

Z Z

Z Z Z Z Z Z

j i

j i

nj ni

j i j i jn i

bus
new

bus
old=

-
-

-
- - -

1 1

2 2

1 1 2 2



 nn ii jj ij bZ Z Z Z+ - +

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙2

		  i = 2; j = 3	

Z

Z Z

Z Z

Z

Z Z

Z Z Z Z Z Z

bus
new

bus
old=

-
-

-
- - -

13 12

23 22

33 32

31 21 32 22 33 2



 33 22 33 232Z Z Z Zb+ - +

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

Zbus = 

j j j j j

j j j j j

j j j j

0 5 0 5 0 5 0 5 0 5

0 5 0 7 0 5 0 5 0 7

0 5 0 5 0 7 0 7

. . . . .

. . . . .

. . . .

-
-
--

- - - + - ¥ +

È

Î

Í
Í

j

j j j j j j j j j j

0 5

0 5 0 5 0 5 0 7 0 7 0 5 0 7 0 7 2 0 5 0 2

.

. . . . . . . . . .

ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙
˙

Zbus = 	

j j j

j j j j

j j j j

j j j

0 5 0 5 0 5 0

0 5 0 7 0 5 0 2

0 5 0 5 0 7 0 2

0 0 2 0 2 0

. . .

. . . .

. . . .

. .

-

- ..6

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

Now apply Kron’s reduction formula

	 Z jk
new 	=	 Z

Z Z

Zjk
j n n k

n n

old -
¥+ +

+ +

( ) ( )

( ) ( )

1 1

1 1

		  j, k = 1, 2, 3 and (n + 1) = 0 (reference node)
		  j = 1; k = 1 and (n + 1) = 0

			   Z11
new 	=	 Z

Z Z

Z
j

j
j11

10 01

00

0 5
0 0

0 6
0 5old -

¥
= - ¥ =.

.
.

		  j = 1; k = 2 and (n + 1) = 0



166  Electrical Power Systems: Analysis, Security and Deregulation

			   Z12
new 	=	 Z

Z Z

Z
j

j

j
j12

10 02

00

0 5
0 0 2

0 6
0 5old -

¥
= - ¥ - =.

( . )

.
.

		  j = 1; k = 3 and (n + 1) = 0

			   Z13
new 	=	 Z

Z Z

Z
j

j

j
j13

10 03

00

0 5
0 0 2

0 6
0 5old -

¥
= - ¥ =.

( . )

.
.

		  j = 2; k = 1 and (n + 1) = 0

			   Z21
new 	=	 Z

Z Z

Z
j

j

j
j21

20 01

00

0 5
0 2 0

0 6
0 5old -

¥
= - - ¥ =.

( . )

.
.

		  j = 2; k = 2 and (n + 1) = 0

			   Z22
new 	=	 Z

Z Z

Z
j

j j

j
j22

20 02

00

0 7
0 2 0 2

0 6
0 633old -

¥
= - - ¥ - =.

( . ) ( . )

.
.

		  j = 2; k = 3 and (n + 1) = 0

			   Z23
new 	=	 Z

Z Z

Z
j

j j

j
j23

20 03

00

0 5
0 2 0 2

0 6
0 567old -

¥
= - - ¥ =.

( . ) ( . )

.
.

		  j = 3; k = 1 and (n + 1) = 0

			   Z31
new 	=	 Z

Z Z

Z
j

j

j
j31

30 01

00

0 5
0 2 0

0 6
0 5old -

¥
= - ¥ =.

( . )

.
.

		  j = 3; k = 2 and (n + 1) = 0

			   Z32
new 	=	 Z

Z Z

Z
j

j j

j
j32

30 02

00

0 5
0 2 0 2

0 6
0 567old -

¥
= - ¥ - =.

( . ) ( . )

.
.

		  j = 3; k = 3 and (n + 1) = 0

			   Z33
new 	=	 Z

Z Z

Z
j

j j

j
j33

30 03

00

0 7
0 2 0 2

0 6
0 633old -

¥
= - ¥ =.

( . ) ( . )

.
.

		  Z

j j j

j j j

j j j
bus =

È

Î

Í
Í
Í

˘

˚

˙
˙

0 5 0 5 0 5

0 5 0 633 0 567

0 5 0 567 0 633

. . .

. . .

. . . ˙̇

	 6.	 Add an element with impedance j0.5, connected between the existing 
node 2 and the reference node 0. (Type 3 modification)
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	 (a)	 To obtain [Zbus] matrix use type 2 modification

			   Zbus	=	

j j j j

j j j j

j j j j

0 5 0 5 0 5 0 5

0 5 0 633 0 567 0 633

0 5 0 567 0 633 0 5

. . . .

. . . .

. . . . 667

0 5 0 633 0 567 0 633 0 5j j j j j. . . . .+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

			   Zbus	=	

j j j j

j j j j

j j j j

0 5 0 5 0 5 0 5

0 5 0 633 0 567 0 633

0 5 0 567 0 633 0 5

. . . .

. . . .

. . . . 667

0 5 0 633 0 567 1 133j j j j. . . .

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

	 (b)	 Now apply Kron’s reduction formula 

	 Z jk
new 	=	 Z

Z Z

Zjk
j n n k

n n

old -
¥+ +

+ +

( ) ( )

( ) ( )

1 1

1 1

		  j, k = 1, 2, 3 and (n + 1) = 0 (reference node)
		  j = 1; k = 1 and (n + 1) = 0

			   Z11
new 	=	 Z

Z Z

Z
j

j j

j
j11

10 01

00

0 5
0 5 0 5

1 133
0 2793old -

¥
= - ¥ =.

. .

.
.

		  j = 1; k = 2 and (n + 1) = 0

			   Z12
new 	=	 Z

Z Z

Z
j

j j

j
j12

10 02

00

0 5
0 5 0 633

1 133
0 2206old -

¥
= - ¥ =.

. ( . )

.
.  

		  j = 1; k = 3 and (n + 1) = 0

			   Z13
new 	=	 Z

Z Z

Z
j

j j

j
j13

10 03

00

0 5
0 5 0 567

1 133
0 2498old -

¥
= - ¥ =.

. ( . )

.
.

		  j = 2; k = 1 and (n + 1) = 0

			   Z21
new 	=	 Z

Z Z

Z
j

j j

j
j21

20 01

00

0 5
0 633 0 5

1 133
0 2206old -

¥
= - ¥ =.

( . ) .

.
.

		  j = 2; k = 2 and (n + 1) = 0

			   Z22
new 	=	 Z

Z Z

Z22
20 02

00

old -
¥

				   =	 j
j j

j
j0 633

0 633 0 633

1 133
0 2793.

( . ) ( . )

.
.- ¥ =

		  j = 2; k = 3 and (n + 1) = 0

			   Z23
new 	=	 Z

Z Z

Z23
20 03

00

old -
¥

				   =	 j
j j

j
j0 567

0 633 0 567

1 133
0 2502.

( . ) ( . )

.
.- ¥ =
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		  j = 3; k = 1 and (n + 1) = 0

				    Z31
new 	=	 Z

Z Z

Z
j

j j

j
j31

30 01

00

0 5
0 567 0 5

1 133
0 2498old -

¥
= - ¥ =.

( . ) ( . )

.
.

			   j = 3; k = 2 and (n + 1) = 0

			   Z32
new 	=	 Z

Z Z

Z32
30 02

00

old -
¥

				   =	 j
j j

j
j0 567

0 567 0 633

1 133
0 2502.

( . ) ( . )

.
.- ¥ =

			   j = 3; k = 3 and (n + 1) = 0

			   Z33
new 	=	 Z

Z Z

Z33
30 03

00

old -
¥

				   =	 j
j j

j
j0 633

0 567 0 567

1 133
0 3492.

( . ) ( . )

.
.- ¥ =

		  Z

j j j

j j j

j j
bus =

0 2793 0 2206 0 2498

0 2206 0 2793 0 2502

0 2498 0 2

. . .

. . .

. . 5502 0 3492j .

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

Review Questions

Part-A

	 1.	 What is meant by a fault?
	 2.	 Why do faults occur in a power system?
	 3.	 List the various types of faults.
	 4.	 Write the relative frequency of occurrence of various types of faults.
	 5.	 State and explain the symmetrical fault or balanced three-phase fault.
	 6.	 What is the need for short-circuit studies or fault analysis?
	 7.	 What is bolted fault or solid fault?
	 8.	 What is the reason for transients during short-circuit?
	 9.	 What is meant by doubling effect?
	 10.	 Define dc offset current.
	 11.	 What is synchronous reactance or steady state condition reactance?
	 12.	 What is subtransient reactance?
	 13.	 What is transient reactance?
	 14.	 Define the short-circuit capacity of power system or fault level.
	 15.	 Find the fault current as given in the figure, if the prefault voltage at 

the fault point is 0.97 p.u.?
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	 16.	 What is the bus impedance matrix?
	 17.	 Give the methods available for forming the bus impedance matrix.

Part-B

	 1.	 A synchronous generator and a synchronous motor each rated 20 MVA, 
12.66 kV having 15% reactance are connected through transformers and 
a line as shown in the figure below. The transformers are rated 20 MVA, 
12.66/66 kV and 66/12.66 kV with leakage reactance of 10% each. The 
line has a reactance of 8% on base of 20 MVA, 66 kV. The motor is 
drawing 10 MW at 0.8 leading power factors and a terminal voltage 
11 kV when symmetrical three-phase fault occurs at the motors terminals. 
Determine the generator and motor currents. Also determine the fault 
current.

    

	 2.	 A 4-bus sample power system is shown in the figure. Perform the short-
circuit analysis for a three-phase solid fault on bus 4. Data are given below.
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		  G1: 11.2 kV, 100 MVA, X = 0.08 p.u.
		  G2: 11.2 kV, 100 MVA, X = 0.08 p.u.
		  T1: 11/110 kV, 100 MVA, X = 0.06 p.u.
		  T2: 11/110 kV, 100 MVA, X = 0.06 p.u.
		  Assume the prefault voltage is 1.0 p.u. and the prefault current is zero.
	 3.	 Two generators G1 and G2 are rated 15 MVA, 11 kV and 10 MVA, 11 kV 

respectively. The generators are connected to a transformer as shown 
in the figure. Calculate the subtransient current in each generator when 
a three-phase fault occurs on the high voltage side of the transformer.

    

	 4.	 A radial power system network is shown in the figure below. A three-
phase balanced fault occurs at F. Determine the fault current and the 
line voltage at 11.8 kV bus under the fault condition.

	 5.	 A 100 MVA, 11 kV generator with X = 0.20 p.u. is connected  
through a transformer to a bus bar that supplies three identical 
motors as shown in the figure and each motor has X = 0.20 p.u and 
X  = 0.25 p.u. on a base of 20 MVA, 33 kV. The bus voltage at 
the motors is 33 kV when a three-phase balanced fault occurs at the  
point F. Calculate
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	 (a)	 the subtransient current in the fault.
	 (b)	 the subtransient current in the circuit breaker B.
	 (c)	 the momentary current in the circuit breaker B.
	 (d)	 the current to be interrupted by circuit breaker B in (i) 2 cycles, 

(ii) 3 cycles, (iii) 5 cycles and (iv) 8 cycles.
	 6.	 Determine the impedance matrix Zbus as shown in the figure below.


